pytorch的模型保存和加载

保存格式可以是pth,pkl,保存整个模型或是仅是参数。

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt

torch.manual_seed(1)    # reproducible

# fake data
# x data (tensor), torch.Size([100]) - shape=(100, 1)
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
# print('x shape', x.shape)
# print('y shape', y.shape)
# x shape torch.Size([100, 1])
# y shape torch.Size([100, 1])

def save():
    # save net1
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()

    for t in range(100):
        prediction = net1(x)
        loss = loss_func(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # plot result
    plt.figure(1, figsize=(10, 3))
    plt.subplot(131)
    plt.title('Net1')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

    # 2 ways to save the net
    torch.save(net1, 'net.pth')  # save entire net net.pkl
    torch.save(net1.state_dict(), 'net_params.pth')   # save only the parameters net_params.pkl


def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pth')
    prediction = net2(x)

    # plot result
    plt.subplot(132)
    plt.title('Net2')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)


def restore_params():
    # restore only the parameters in net1 to net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )

    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pth'))
    prediction = net3(x)

    # plot result
    plt.subplot(133)
    plt.title('Net3')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.show()

# save net1
save()

# restore entire net (may slow)
restore_net()

# restore only the net parameters
restore_params()

 

最新回复(0)
/jishuCjZNabR3AOI6uRBN6Bisc92z4FVDzSeJ6xZAWw_3D_3D4795429
8 简首页